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Abstract

Partially observable Markov decision processes (POMDPs)

are an attractive representation for representing agent be-

havior, since they capture uncertainty in both the agent's
state and its actions. However, finding an optimal pol-

icy for POMDPs in general is computationally difficult. In
this paper we present Markov Tracking, a restricted prob-

lem of coordinating actions with an agent or process repre-
sented as a POMDP. Because the actions coordinate with

the agent rather than influence its behavior, the optimal so-

lution to this problem can be computed locally and quickly.
We also demonstrate the use of the technique on sequential

POMDPs, which can be used to model a behavior that fol-
lows a linear, acyclic trajectory through a series of states.

By imposing a "windowing" restriction that restricts the

number of possible alternatives considered at any moment

to a fixed size, a coordinating action can be calculated in

constant time, making this amenable to coordination with

complex agents.

1 Introduction

Stochastic representations of agents can capr_ure aspects that
are otherwise difficult to model, such as errors, alterna-

tive outcomes of actions, and uncertainty about the world.

These difficulties may arise because of other agents in the
world, factors that are simply not well understood, or lack

of representation detail.

Markov models [2] axe a popular choice for construct-

ing stochastic representations. A Markov decision process

(MDP) describes an agent's state as a discrete set of sit-

uations. The effects of an agent's actions are represented

as probability distributions over the states, reflecting both

the range of possible outcomes and their likelihoods. An

agent's behavior is a sequence of states and actions. The

usual way to plan a behavior in an MDP is to construct a

policy: a mapping from states to actions, indicating for each
state which action the agent will take when it is in that state

(note that a policy allows multiple behaviors, since there axe

multiple possible outcomes of actions). Rewards associated
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with states and actions specify the local utility of a policy;

the total reward of a state for a given policy is simply the

sum of the rewards of all the possible behaviors allowed by

the policy (weighted by the probabilities). An optimal pol-

icy c_.n be computed for an MDP, specifying for each state

the optimal action to take to maximize the total utility of

the p!an.
The classic MDP, however, does not account for uncer-

tainty in the.agent's state. Often this state is known only

indirectly through observations. If there is inaccuracy or

uncertainty in the observation, this indirect information re-
flects only imprecisely the actual process state. To account

for the state uncertainty, MDPs have been extended to par-

tially observable MDPs (POMDPs) [6]. In this model, the

underlying agent is an MDP, but the state is only indirectly

know'a; an observation is produced on each state transition.

The r.aodel specifies the probability of seeing an observation

in a s:ate (this can be produced in practice by experimental

study). Instead of an exact state, the knowledge of the pro-
cess (:an be represented as a probability distribution over

states, called the belief state. A policy in a POMDP is a

mapping from belief states to actions. An optimal POMDP

policy is thus a mapping from belief states to actions, indi-

cating the optimal action to take in each belief state. This

can be useful when the agent has imprecise knowledge of

its own state, or an external agent is trying to control (or

assist) the agent.

The major drawback of POMDPs is that finding an op-
timal plan is computationally daunting. The state of the

art aliiows problems of up to about 100 states, and nowhere

near real time [5]. Approximation algorithms [15, 8, 13, 14]
face a tradeoff that severely compromises solution quality

for speed.

In this paper, we look at a restricted problem, Markov

Tracking, that is concerned with coordinating actions with

an agent or process rather than influencing its behavior. It
uses the POMDP model to follow the agent's state, and re-

acts optimally to it. Thus it finds the optimal coordination

plan for an external agent. We show that this restriction
allows the optimal action to be computed locally, thus al-

lowing the optimal plan to be computed efficiently. Despite

the restriction on the model, this approach has a number of

interesting possible application areas.
We also discuss the application of Markov Tracking to

a subclass of problems called sequential POMDPs. Within

this class the optimal action is not only computed locally,

but c_tn be computed in constant time under certain con-

ditions, allowing true on-line performance with large-scale

problems.
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Fora finitehorizonn and full observability, the value
function is analogous. We denote the state value under the

optimal n-horizon policy as:

v°(i) = r,(O)

v"(i) = max {oi(a) + /3 E v'_-'(k)p'k(a)}=E.akE_ ,for n > O

where ri(0) is the terminal reward received when the process
ends up in state i. Note that

limn_v"(i) = v(i).

However, in a partially observable MDP, the progress
of the core process is not known, but can only be inferred
through a finite set of observations. The observations are

captured with the following information:

• a finite set 34 _= {1,..., M} representing the possible
observations

a variable Y_ E A/[ representing the observation at time
t

2 Markov decision processes

In this section we briefly review Markov processes, and in

particular POMDPs. We will borrow the notation of [7],
adding or changing only as required for the problem at hand;

the reader can refer there for a more complete explanation of

the framework. The mathematical details, while necessary
to prove the optimality of the approach, are not necessary

to understand how Markov Tracking works.

We assume that the underlying process, the core process,

is described by a finite-state, stationary Markov chain. The •

core process is captured by the following information:

• a finite set Af - {1,..., N}, representing the possible •
states of the process

• a variable X_ EAf representing the state of the core
process at time t

* a finite set .4 of actions available •

• a matrix P = [P_J], i,j EAf specifying transition prob-

abilities of the core process: P(a) = _ij (a)] specifies
the transition probabilities when action a E ,4 is cho-
sen

* a reward matrix R = [rij],i,j E Af specifying the im-

mediate rewards of the core process: R(a) = [vii (a)]
specifies the reward received when the action a E .4 is

executed, moving the process from state i to state j.
We will use the shorthand

o,(a) = _ r,s (a)p,j (_)
j EsXf

to denote the reward of taking action a when in state

i, and co(a) = {_01(a) .... ,cow(a)}.

So at time t, the core process is in state Xt = i, and
if an action a E ,4 is taken, the core process transitions to

state Xt+l = j with probability plj(a), receiving immediate
reward rij (a). where

In MDPs with full observability, actions are chosen by a

policy that maps states to actions. The optimal policy is the
policy that maximizes the utility of each state. The value

of a state under the optimal policy (given full observability)

and an infinite planning horizon is defined as:

r
at.4 kE2¢" )

where 0 _< 13 < 1 is a discount factor (this ensures a bounded

value function).

a matrix Q = [qil],i E A[,j E 34 specifying the prob-

ability of seeing observations in given states: Q(a) =
[qij (a)], where qij (a) denotes the probability of observ-
ing j from state i when action a E ,4 has been taken

a state distribution variable 7r(t) = {7rl (t),..., 7rN (t)},
where rri(t) is the probability of Xt = i given the in-
formation about actions and observations

• an initial state distribution 7r(O).

At time t, the observation of the core process will be

Y_. If action a E ,4 is taken, we can define a function to
determine Y_+t. In particular, we define

"y(jlTr(t), a) = E qij(a) E pk,(a)Trk(t)
iE]V" kE2_f

(1)

as the probability that Yt+l = j given that action a E .4
is taken at time t and the state distribution at that time is

.(t).
To determine the state distribution variable r(t + 1), we

define the transformation T as follows:

7r(t+ 1) = T(r(t)lj, a)

= {Tl(Tr(t)]j,a),...,TNOr(t)lj, a)}

TiOr(t)lj, a) = q'i(a) _"_tcelv'Pki(a)Tra(t)
_-_,_1¢ q,j (a) _"_-kEe¢Pk, (a)rrk (t)' (2)

for i EAf, and where r(t) is the state distribution at time

t, a E ,4 is the action taken at that time, resulting in obser-
vation j E 34.

Actions are chosen by a decision rule (or plan) that maps

state distributions to actions. The utility of a state distri-

bution rr under the optimal decision rule can be computed
by the POMDP value function:

V(_) = max,E_ Lfv" Q(a) +/3jE_E V[T(=[j, a)]'y(j[Tr, a)}. (3)



Forthefinite-horizoncase,thePOMDPvaluefunctionis
againanalogous:

v°(_) = _.r(0) (4)
/

V"(zr) = max _ zr. o(a) +

aE.A L

Note that

E V'_-liT(TrIj'a)lT(j[lr'a)} 'f°r n > 0(5)
jE2_

3 Markov Tracking

Suppose that instead of wanting to find the optimal plan

to control an agent, we wanted to find the optimal plan to
coordinate with an agent. In this case we consider actions

that do not directly influence the agent's behavior. Instead,

what is important is that the correct action is taken with

respect to the actual agent state. If the agent is represented

by a POMDP, then in fact there is in general uncertainty

about the agent's state, so the choice of action must take
into account the possibility that the action is in fact not the

best for each possible state, but is rather the best for the

set of possible states taken together.

In the POMDP formalism, the lack of intiuence of actions

on the underlying process can be stated as the independence

of the process and the actions:

V_,_,eAV,,jex P(i]a, j) = P(ila', j) (6)

V_,o,eAVoe_V_e:cP(oli, a) = P(oli, a') (7)

Informally, this means that the transition from one state to
another is independent of the action, and the observation is

also independent of the action. What remains to distinguish
one action from another is the reward function.

Note that this is realistic only in the sense that the ac-
tions in this framework are in fact external, coordinating

actions. One thing that is lost in this representation of the

problem is the dependency between the agent's internal ac-
tions and its behaviors. When the agent follows a policy

internally, this is information that could allow a more accu-

rate (but slower) tracking of its behavior.

Using the independence equations along with the finite-

horizon POMDP value equations 4-5, we can see by simple

induction over the horizon depth that

v.,°,_Ao(a,s) >__(_',s) _ Vo(s)> y,.,(_)

that is, that an action with a greater immediate reward will

in fact give a higher overall value. This means that the

optimal action, which is the action that gives the highest

value (see Equation 3), is in fact in this case the action

with the greatest immediate reward. In the general POMDP

case, this isn't necessarily true because of _he difference in

transition and observation probabilities.

So what does this model give us? We now have a pro-

cess (the agent) that transitions probabilistically and pro-

vides observations also probabilistically. Using the POMDP

transition function (Equation 2), the current belief state

b(s) is updated, and the optimal action is the action that
maximizes the immediate reward for the belief state. In ef-

fect, this relies on the accuracy of the observations and the

amount of non-determinism in the underlying process, since

no ccntrol is exerted to gain more information. But at the

same time, maintaining multiple hypotheses about the cur-
rent :_tate allows the method to remain "on track" even in

the presence of noise and uncertainty.

3.1 Applications of Markov Tracking

Desp:ite the apparent simplicity of the approach, there exist

a variety of applications for which it appears to be well-

suited, including robotics, speech recognition, and music.

For e_ample:

• In telerobotics, a (possibly human) controller directs
the robot to move around the environment. In return,

the sensor information from the robot could be used

to warn the operator about potentially hazardous (or

beneficial) areas.

• In mobile robotics, while navigating through the en-

vironment, a robot may have unused sensors (for ex-

ample, a camera) that could be directed towards sus-

pected obstacles or other objects of interest.

• In system support for space vehicles, the ground team

(or on-board computer) receives information from on-
board sensors and must decide what experiments can

be run given the current state of the system [16].

• In speech recognition, a computer could be given a

text, with the task of coordinating with a spoken ver-
sion of the text (for example foreign-language subti-

tling or interactive theater).

• In music, a computer could be given a musical score,

with the task of playing the accompaniment, allowing

for errors on the part of the performer [3].

The l_tter three applications involve potentially huge state

spaces, and the complexity issues arising from that will be
discu_ed in Section 4.

Although the method is provably optimal for the model

we have presented, this does not necessarily translate into

high performance. For instance, the loss of information

about the agent's individual actions and their results may
diminish the effectiveness.

To illustrate the method, we have implemented a teler-

obotics scenario in a simple mobile-robot simulation envi-
ronment. A robot moves around in its environment au-

tonomously, and it sends its sensor information to another

agent. The agent that receives the sensor information has

the task of guessing the robot's position from the sensor in-
formation and notifying an operator when the robot reaches

a hazardous or beneficial state. This is a simplified instance

of the general task of "smart alarms" to ask for human as-

sistance when necessary. The second agent could also be

responsible for directing the robot to take certain actions

(in lieu of human intervention) or change its operations.

The example world is shown in Figure 1 [5]. The world

consists of 23 squares, within each of which the robot may

be in one of four orientations (N,S,E,W), leading to a total

of 92 possible states of the robot. Observations are defined

with respect to the walls around the robot, with a moderate

level of noise (e.g., see Figure 2). The observation proba-

bilities are taken from the original definition of the prob-

lem used in [5], modified to eliminate a distinguished goal
state. Without direct information about the robot actions,

the tmmsitions are defined probabilistically, with uncertainty



Figure1: Exampleworld. A stateis anorientation
(N,S,E,W)withinasquare.Distinguishedstatesaremarked
witha '+' (beneficialstates)ora '-' (hazardousstates).

Figure2:Probabilitydistributionoverpossibleobservations
foranexamplestate(actualstateshownbelowthedistri-
bution).

0.3 0.4 0.3

Figure 3: Transition probabilities for an example state.

about the next state based on the lack of knowledge about
the robot's movement (e.g., see Figure 3).

Within the world, we defined a set of 8 states (2 squares)
marked with a '-' that represent hazardous states, and 8

states (2 squares) marked with a '+' that represent bene-

ficial states. Together these 16 states will be called distin-

guished states. The correct action in a hazardous state is

to turn on a red light, and the correct action in a beneficial

state is to turn on a green light. Note that because of the

symmetry within the world (the differences in rewards for

the distinguished states do not show up in the observations),
pairs of states (reflections about the center of the world) are

completely indistinguishable.
The rewards were defined as follows:

true positive : turning on the correct light in a distin-

guished state. +2

false positive : turning on a light in a non-distinguished
state. - 1

false negative : doing nothing in a distinguished state. -2

true negative : doing nothing in a non-distinguished state.
+1

Turning on the incorrect light in a distinguished state is
ia fact a false negative for the light that should have been

turned on and a false positive for the light that was actually

turned on; it is given a penalty of -2, the maximum penalty

of the two. In fact, the only important feature of the penal-

ties is that the reward for a true positive be greater than
the penalty for a false positive. The reason is that in this

world, the symmetry implies that there will always be at

most 50% certainty of being in a distinguished state, and

less because of noise. With equal weights for true positives
and false positives, the tracking system would never choose

to turn on a light.

An experimental trial consisted of the robot taking a
random walk around the environment, respecting the un-

derlying probabilistic model in its actions and observations

(to avoid states or observations that fall outside the model),

but hidden from the Markov Tracking system except for the
observations provided. The starting probability distribu-

tion was uniform over all states, so that the tracking system

started with no information about the robot position. Each
trial was run for 1000 iterations (i.e., a random walk of 1000

actions).

The complete experiment consisted of 1000 trials. The
results can be seen in Figure 4. Each set of 10 iterations

was grouped together to show the behavior over time while

reducing the experimental noise. We can see that the rate

of identification becomes high after a small number of itera-

tions and remains there. In general, the data show that the

system starts with no knowledge and thus generally chooses

to do nothing, but that after seeing a series of observations,

the certainty grows to where in the great majority of cases,

the correct action is taken (the remainder of the errors being

largely due to the inherent noise in the model).

The symmetry of the problem precludes a definitive iden-

tification of the robot position, even given perfect informa-
tion. To determine the effect of symmetry on the results,

we constructed a version of the problem with one square

removed, thus making it asymmetric (see Figure 7). With

perfect information the robot would be able to (eventually)

distinguish among the states. We would expect this to help
reduce the problem of false positives. In fact this is the

case, as can be seen from Figure 5. This shows that a small
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Figure 7: Example world, with one square removed to make

it asymmetric.
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Figure 8: Example world, with a marker added (the square

with the star).

change in the world can make a significant difference in the

accuracy of identification.

The rate of recognition grows even higher when a marker

is placed in one square of the world that tells the robot
that it is in that square when it happens to pass through

(see i._igure 8). The rotational uncertainty remains, since
the orientation is unspecified. The presence of the marker
allow,s the robot to localize itself from time to time and thus

nearly eliminate errors (see Figure 6). It is interesting that

an occasional beacon in a noisy world allows this level of

improvement.

In all of these cases, the true transition model of the un-

derly:ng agent (the transition probabilities of each possible

actiou in each state) is replaced by an action-independent

transLtion model, thus losing information. So the fact that

the agent state can be effectively tracked even with this loss

of information is an encouraging result.

4 Markov Tracking for Sequential POMDPs

The computational complexity of choosing the optimal ac-

tion in Markov Tracking is C)(N), since it involves a simple



vectordotproductof thebeliefstatewitharewardvec-
tor.Formostapplications,evenwithrelativelylargestate
spaces,thisposeslittleproblemforreal-timeperformance.
However,hiddenbehindthisisthebeliefstateupdate,which
involvesO(N2)calculations(seeEquation2).Intheexam-
pleproblemshownin thispaper,a trialof 1000iterations
takeslessthana halfminuteona SunSparcStation20.
Butforverylargestatespaces,thecomplexitycouldstart
toadverselyaffecton-lineperformance.In thissectionwe
showhowarestrictedclassof POMDPscanbetrackedin
constanttime.Thisallowscomplexagentsto betracked.

4.1 Sequential POMDPs

A sequential POMDP is a restricted POMDP in which the

state transitions in the underlying MDP are constrained to

the same state or the "following" state:

V_.j_]gV,_np_j(a) > 0 --4 i <_ j < i + 1

Graphically such a model looks like Figure 9. In fact, this

can be generalized a bit: if the number of nonzero transitions

from any state is less than a constant bound, the results in

this section will hold. However, in the remainder of the
section, we will hold to the more restrictive definition for

ease of explanation and understanding.
Given the restriction on the model, the state distribu-

tion update given in Equation 2 can be computed in O(N),

since the denominator can be computed once for all Ti at

a cost of O(N) and the numerator is computed separately

for each Ti at constant cost for each (thus O(N) total). In
addition, the memory required for the transition and reward

matrices is O(N. [AI) and the memory for the observation

matrix remains O(N. IM[" [.A]). For Markov Tracking, the
{A[ terms disappear, since the transitions are independent
of the actions.

4.2 Windowing

In POMDPs, the state of knowledge of the current state of

the process is represented by the belief state, which is a prob-

ability distribution over the set of states. Over time, this

distribution may have many non-zero but vanishingly small
elements, each of which must be taken into account when

updating the belief state. However, if we limit the distribu-

tion to the k most probable states, for some constant k, by

zeroing the rest and renormalizing the distribution, the com-

putational complexity of tracking in the general POMDP
case reduces from O(N 2) for N states to O(N), based on

the cost of the belief state update in Equation 2.

4.3 On-Line Markov Tracking

For sequential POMDPs, given a distribution of k possible
states, there are at most 2k states that could have a non-

zero probability in the following time step (of which k will
be retained). This means that the belief state update can

be limited to those states, and in fact that makes the belief

state update O(1) (constant).

Note however that there is some risk in limiting the belief

state distribution to a fixed-size window. First, the coordi-

nation action chosen will be the optimal only with respect to

the truncated predictions. In particular, in the worst case,

the truncated belief state could correspond only remotely to
the "real" belief state.

Perhaps a more troubling problem, for both theory and

practice, is that it is possible for an observation to be seen

that is in fact impossible in any of the 2k successor states

(because it comes from a state that was very improbable

but in fact correct). This results in a null state distribution
when the formulas are used.

We propose the following method to handle this (fortu-
nately rare) occurrence. The transition probabilities indi-

cate the evolution of the belief state given no observations,

so the tracking process fails back on these in the presence

of "impossible" observations. This allows the model of the

process to evolve over time even in this case. It is a bit like

"flying blind" when all the instruments go dead--the best

strategy is to continue with the best existing model. In our

experience this allows the process to re-orient itself quickly.

See Section 6 for other ideas under development.

4.4 Applications of On-Line Markov Tracking

The On-Line Markov Tracking approach can be applied to

a number of problem domains. Sequential POMDPs are

appropriate for domains that follow a trajectory over time.

For example, the computer could have the job of following a
spoken text and producing a subtitled text to accompany it.

Or the computer could have the job of following a musical

score and playing an accompaniment. The generalization of

sequential POMDPs to POMDPs with a constant number
of transitions per state leads to application domains that

include telerobotics and space vehicle status tracking.
We are investigating these and other "real" applications,

but for initial results, we constructed a number of randomly-

generated scenarios to illustrate our ideas.

Each scenario consisted of a sequence of states of length

250 (plus a distinguished Start and End state). Each state
was chosen from a set of 10 possible states, S0-$9. The ob-

servations, O0-O9, correspond to the states, but with some

noise: the "correct" observation is given with a probability

depending on the scenario (described more below), with the

rest of the probability distributed on surrounding observa-

tions (where surrounding was computed syntactically--the
closest observations to 04 are 03 and 05, for example).

A process started in the Start state and transitioned

probabilistically from state to state, producing an observa-

tion computer randomly according to the noise probabilities.
When the process reached the End state, it remained there

(i.e., the only transition was to the same state). The Start
and End states produced distinguished observations.

Two variants of this scenario were explored: relatively

high reliability of transitions and observations, and rela-
tively low reliability. The high reliability scenario used a

transition probability of 0.9 of moving to the next state,

and a probability of a correct observation in the range 0.825-
0.91. The low reliability scenario used a transition proba-

bility of 0.7 of moving to the next state, and a probability
of 0.635--0.815 of a correct observation. So in the low reli-

ability scenario, the information available is less helpful for

determining the precise state. In all cases the start and end

states are identified with complete certainty--the interesting
question is how well it follows the intermediate states.

With each scenario, Markov Tracking was run with a

window of 10 states, which is an admittedly arbitrary choice,

but chosen to be both not trivially small (for accuracy) and

not too large (for computation). Each experimental trial

consisted of running the tracking method for 400 iterations
on this process (by which time in almost all cases the process

was in the End state). For each of a set of 10 randomly-

generated cases within each scenario, we ran 100 trials, so
1000 trials in all for each scenario.
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Figure 9: Sequential POMDP. All transitions are to the same or following state.
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Figure 10: Number of correct identifications per state, high-

reliability scenario.

Figure 11: Number of correct identifications per state, low-
reliability scenario.

The results can be seen in Figures 10-11. The 100 trials

from each case were averaged, and then these 10 averages

(one per case) were again averaged to produce the line la-
beled "average" in the graphs. This is the average over all
trials within a scenario. The "worst case" line is the min-

imum value of the 10 cases, the "best ease" line shows the

maximum value of the 10 cases. Obviously for any single

trial the accuracy for a single iteration is simply 0 or 1, but

the results give an idea of the expected accuracy within and

across scenarios. The accuracy rises to perfect once all be-

haviors have been terminated (depending on the actual trial,

the length of the behavior could be different).
In the high-reliability scenario, the average accuracy is

at least 94%, with a median of 96.7%. In the low-reliability

scenario, the average accuracy is at least 80%, with a median

of 85.9%. This shows that, as expected, accuracy declines
with an increase in noise and unpredictability, but that in

general the tracking method is able to accurately follow the
process. In fact, the errors seem to be mostly local errors

caused by incorrect observations. There were no cases of

null distributions caused by the truncated probability dis-

tributions in the cases examined; in fact, the windowing lost
at most 0.0001 of the distribution even in the low-reliability

scenario.

5 Related Work

Markov Tracking can be seen as a variant of plan recognition

[9, 1], where the goal is restricted to finding the current state

of the agent rather the entire plan structure. As a state
recognizer, it is also related to mode identification for fault

recovery [16].
Markov Tracking is a special case of the general POMDP

problem, which is computationally intractable in its full

form [5]. Approximation algorithms for the full POMDP

problem [15, 8, 10, 13, 14] remain far from real time.
The RESC approach [12, 11] is designed for real-time

agent tracking. That approach does not reason explicitly
about the probability of multiple possible agent states, but

rather commits to one possible state and relies on fast back-

tracking to switch among possibilities. This backtracking,

altho_zgh restricted, lacks the complexity guarantees that

Markov Tracking offers. In addition, the commitment to a

single agent state at a time precludes choosing a collabo-
rative action that is the best given the lack of information

about; the precise state.
The Markov Tracking approach is in some sense comple-

ment-'_ry to the Kalman filtering approach [4], used widely

in robotic applications. The Kalman filter maintains a best

estimate of the position, along with an error estimate. The
Kalman filter assumes Gaussian noise and error, which is not

always the case in the domains discussed here. In robotic

navigation, if the robot approaches a branch, the Markov
Tracking approach can represent the two discrete possibil-

ities explicitly. The Kalman filter, on the other hand, is a

better choice for continuous spaces where its assumptions
hold.

6 D_scussion

We have introduced the method of Markov Tracking, which

chooses the optimal coordination action with respect to an

agent modeled as a POMDP. Furthermore, we have shown
that the choice of optimal action can be calculated locally,

avoiding the lengthy (and for practical purposes, intractable)
comp_tation of the general POMDP case. In our initial re-

sults, the method performs well in the presence of noise and

uncer_;ainty.



WehavealsointroducedOn-LineMarkovTracking,a
specializationofMarkovTrackingthatchoosescoordination
actionsfor therestrictedcaseofsequentialPOMDPswith
afixed-sizewindowonthebeliefstate.Undertheserestric-
tions,thechoice of the coordination action can be calculated

locally in constant time per step. This allows the approach

to scale up to coordination problems for agent models with

huge state spaces.

The power of Markov Tracking rests on its ability to take

the best action with respect to the uncertainty of the precise

state. So if the sensors give highly reliable information, the

best action for the actual state will be taken, but if the

state is known only imprecisely, the action that has the best

utility over all the possible states is taken. Given the fact

that the precision of sensors and tests is increasing over time,

it is reasonable to use the estimates given by the sensor and

test data. However, it would be a grave error to discount

completely the inherent error, and the approach accounts
for that as well.

The tracking method remains "on course" even in the

presence of noise and a restricted belief state. The size of the

window can be altered to handle increasing levels of noise,
with of course an accompanying increase in the constant

factor of computation.

The problem of 0-probability observations can be vexing.

Although in our experiments we didn't see any such cases,
in operational systems such a fault couldn't be ignored: fly-

ing blind for more than a small number of steps could have

disastrous consequences. The issue comes down to whether

to believe your observations or your predictions. This could

depend on sensor reliability and how much of the prediction
distribution was lost by windowing. We are currently inves-

tigating ways of "mixing" sensor-based and prediction-based

belief states to provide a robust method for recovering from

0-probability observations. Initial results indicate that in
practice this will reduce the accumulated error in the trun-
cated belief state.
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